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Abstract. Visual anomaly detection is commonly used in industrial
quality inspection. In this paper, we present a new dataset as well as
a new self-supervised learning method for ImageNet pre-training to im-
prove anomaly detection and segmentation in 1-class and 2-class 5/10/high-
shot training setups. We release the Visual Anomaly (VisA) Dataset con-
sisting of 10,821 high-resolution color images (9,621 normal and 1,200
anomalous samples) covering 12 objects in 3 domains, making it the
largest industrial anomaly detection dataset to date. Both image and
pixel-level labels are provided. We also propose a new self-supervised
framework - SPot-the-difference (SPD) - which can regularize contrastive
self-supervised pre-training, such as SimSiam, MoCo and SimCLR, to
be more suitable for anomaly detection tasks. Our experiments on VisA
and MVTec-AD dataset show that SPD consistently improves these con-
trastive pre-training baselines and even the supervised pre-training. For
example, SPD improves Area Under the Precision-Recall curve (AU-PR)
for anomaly segmentation by 5.9% and 6.8% over SimSiam and super-
vised pre-training respectively in the 2-class high-shot regime. We open-
source the project at http://github.com/amazon-research/spot-diff.

Keywords: Representation learning, pre-training, anomaly detection,
anomaly segmentation, industrial anomaly dataset

1 Introduction

Visual surface anomaly detection and segmentation identify and localize defects
in industrial manufacturing [3]. While anomaly detection and segmentation are
instances of image classification and semantic segmentation problems, respec-
tively, they have unique challenges. First, defects are rare, and it is hard to
obtain a large number of anomalous images. Second, common types of anoma-
lies, such as surface scratches and damages, are often small. Fig. 1 (a) gives an
example. Third, manufacturing is a performance sensitive domain and usually
requires highly accurate models. Fourth, inspection in manufacturing spans a
wide range of domains and tasks, from detecting leakages in capsules to finding
damaged millimeter-sized components on a complex circuit board.
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Fig. 1. (a) Normal and anomalous samples of VisA - PCB1 with real defect (molten
metal), anomaly highlighted by red ellipse; (b) A pair of images for the spot-the-
difference (SPD) puzzle [25]; (c) An anchor image and its variant augmented by
SmoothBlend for synthetic spot-the-difference; (d) GradCAM attention visualization
for PCB1 - Anomaly image based on self-supervised ImageNet pre-training w/wo pro-
posed SPD. With SPD, attention is more focused on the local defects.

Upon the aforementioned challenges, previous surface anomaly detection
models have been typically trained for a particular object and require re-training
for different ones. For each object, there are only slight global differences in light-
ing and object pose/positions across images while the diversity in the defects on
objects is large. Moreover, due to the rarity of anomalous data, there has been
a predominant focus on 1-class anomaly detection, which only requires normal
images for model training [6,10,14,26,33,44]. In mature manufacturing domains,
anomalous samples are also available and sometimes sufficient. In such cases, one
can improve over 1-class methods with a standard 2-class model [12,18,21,27] by
incorporating the anomalous data in training, which is in fact a well-established
practice in commercial visual inspection AI services [1,2]. For both setups, exist-
ing state-of-the-art methods for surface anomaly detection commonly leverage
supervised representations pre-trained on ImageNet [16], either as feature ex-
tractors [14,33] or as initialization for fine-tuning on the target dataset [26,44].

Meanwhile, recent advances in self-supervised learning (SSL) have shown
that pre-trained representations learned without categorical labels might be a
better choice for transfer learning compared to those from supervised in object
detection and segmentation [8,9,23]. However, their application to anomaly de-
tection and segmentation is underdeveloped. SSL for surface anomaly detection
was explored in CutPaste [26] to learn representation from downstream images
for each specific object. However, such representations hardly generalize to dif-
ferent objects and can lead to overfitting in a practical setting where only 1-20
normal samples are available. Also, there are previous works focusing on SSL
for high-level semantic anomaly detection such as cat among a distribution of
dogs [11,13,37]. However, as [35] pointed out, surface anomaly detection aims
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to spot the low-level textual anomalies such as scratch and crack which has
challenges different from semantic anomaly detection. Until now, the universal
self-supervised pre-trained representation with good generalization ability have
not yet been attempted for surface anomaly detection and segmentation.

Regarding the evaluation protocol, the community has been experiencing the
lack of challenging benchmarks. The popular MVTec Anomaly Detection (AD)
benchmark [3] is saturating with the Area Under the Receiver Operating Char-
acteristic (AU-ROC) approaching ∼95% [14,26], and the benchmark is limited to
the 1-class setup. But the anomaly detection problems in practice is still far from
solved, demanding new datasets and metrics that better represent the real-world.
In this paper, we introduce a new challenging Visual Anomaly (VisA) dataset.
VisA is collected to present several new characteristics: objects with complex
structures such as printed circuit board (PCB), multiple instances with different
locations in a single view, 12 different objects spanning 3 domains, and multiple
anomaly classes (up to 9) for each object. VisA contains 10,821 high-resolution
color images - 9,621 normal and 1,200 anomalous - with both image and pixel-
level labels. To our best knowledge, VisA is currently the largest and most chal-
lenging public dataset for anomaly classification and segmentation. Moreover, to
cover different use cases in practice, we establish benchmarks not only in stan-
dard 1-class training setup but also 2-class training setups with 5/10/high-shot.
For evaluation, we propose to use Area Under the Precision-Recall curve (AU-
PR) in combination with standard AU-ROC. In the imbalanced defect dataset,
AU-ROC might present inflated view of performances and AU-PR is more in-
formative to measure anomaly detection performance [11,13,37].

In addition to an improved dataset, we also explore self-supervision to im-
prove anomaly detection. As we argue below, our hypothesis is that previous con-
trastive SSL methods [8,9,23] are sub-optimal to transfer learning for anomaly
detection. Specifically, SimCLR, MoCo and other methods regard globally aug-
mented images of a given image as one class and other images in the same batch
as negative classes. Transformations, such as cropping and color jittering, are
applied globally to the anchor for positives generation. The InfoNCE or cosine
similarity losses [8,9,23] encourage invariance to these global deformations, and
capturing semantic information instead of local details [19]. However, anomaly
detection relies on local textual details to spot defects. Thus the subtle and local
intra-object (or intra-class) differences are important but not well modeled by
previous methods. Figure 1 (d) illustrates the sub-optimality in one of the pre-
vious SSL methods using the GradCAM attention map [38]. As far as we know,
improving representations by self-supervision for better downstream anomaly
detection/segmentation has not been studied before and we explore this angle.

Inspired by the spot-the-difference puzzle shown in Fig. 1 (b), we propose a
contrastive SPot-the-Difference (SPD) training to promote the local sensitivity
of previous SSL methods. In the puzzle, players need to be sensitive to the subtle
differences between the two globally alike images, which is similar to anomaly
detection. In the contrastive SPD training, as shown in Fig. 1 (c), a novel aug-
mentation called SmoothBlend is proposed to produce the local perturbations on
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SPD negatives for synthetic spot-the-difference. The (locally) augmented images
are regarded as negatives, which is different from regarding (globally) augmented
images as positives in SimCLR/MoCo. Moreover, weak global augmentations,
such as weak cropping and color jittering, are also applied to the SPD negatives
as anomaly detection should spot defects under slight global changes in lighting
and object pose/position. Additionally, to prevent models from using the slight
global changes as shortcuts to differentiate negatives, SPD positives are gener-
ated by applying weak global augmentations on the anchor. Lastly, SPD training
minimizes the feature similarities between SPD negative pairs while maximizing
the similarities between SPD positives, which encourages models to be locally
sensitive to anomalous patterns and invariant to slight global variations.

Our main contributions are as follows:

1. We propose a new VisA dataset, 2× larger than MVTec-AD, with both
image and pixel-level annotations. It spans 12 objects across 3 domains,
with challenging scenarios including complex structures in objects, multiple
instances and object pose/location variations. Moreover, we establish both
1-class and 5/10/high-shot 2-class benchmarks to cover different use cases.

2. To promote the local sensitivity to anomalous patterns, a SPot-the-Difference
(SPD) training is proposed to regularize self-supervised ImageNet pre-training,
which benefits their transfer-learning ability for anomaly detection and lo-
calization. As far as we know, we are the first one to explore self-supervised
pre-training on large-scale datasets for surface defect detection tasks.

3. Compared to strong self-supervised pre-training baselines such as SimSiam,
MoCo and SimCLR, extensive experiments show our proposed SPD learning
improves them for better anomaly detection and segmentation. We also show
the SPD improves over supervised ImageNet pre-training for both tasks.

2 Related Works

Unsupervised Anomaly Detection and Segmentation use only normal
samples to train models, which have drawn extensive attention. Many recent
methods are proposed to detect low-level texture anomalies [35], such as scratches
and cracks, which are common cases in industrial visual inspection [15,31,34,44].
SPADE [14] and PatchCore [33] extract features at patch level and use nearest
neighbor methods to classify patches and images as anomalies. PaDiM [14] learns
a parametric distribution over patches for anomaly detection. CutPaste [26]
learns a representation based on images augmented by cut-and-pasted patches.
The supervised ImageNet models are used in these methods either as feature
extractors or initialization for fine-tuning. However, self-supervised pre-training
on large-scale datasets is an unexplored area for quality inspection applications.
In addition, several works [30,39,40,36] focus on high-level semantic anomaly
detection. As mentioned in [35], semantic anomaly detection approaches can be
less effective for texture anomaly detection as their challenges are different.
Self-Supervised Learning (SSL) have gathered momentum in the last 5
years. Several surrogate tasks have been proposed for self-supervision, such as
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Fig. 2. (a) Contrastive learning in SimCLR, MoCo and SimSiam; (b) Contrastive learn-
ing in SPD training. Local deformation in SPD negative is highlighted by circle.

image colorization [46], rotation prediction [20], jigsaw puzzles [29]. Recently,
multi-view based methods such as MoCo [23], SimCLR [8], SimSiam [9] and
BYOL [22] present better or comparable performances than supervised pre-
training in transfer learning tasks including image classification, object detection
[43] and semantic segmentation [41]. Moreover, to promote spatial details of rep-
resentations for localization tasks, several approaches proposed to encourage the
invariance of patch features to global augmentations [41,42,28,7], although they
may not lead to local sensitivity to tiny defects. As far as we know, none of these
works explored their generalization ability to surface defect detection tasks.

3 SPot-the-Difference (SPD) Regularization

To promote local sensitivity of standard self-supervised contrastive learning, we
propose a contrastive SPot-the-Difference (SPD) regularization. As mentioned
earlier, SPD aims to increase model invariance to slight global changes by max-
imizing the feature similarity between an image and its weak global augmenta-
tion, while forcing dissimilarity for local perturbations, as shown in Fig. 2 (b).
In the following, we first present background in contrastive learning, and then
the augmentations used in SPD followed by the learning with SPD.

3.1 Background on Self-supervised Contrastive Learning

Many self-supervised learning methods, such as SimCLR [8] and MoCo [23], are
based on contrastive learning. As shown in Fig. 2 (a), given an image, these
methods maximize the feature similarity between two strongly augmented sam-
ples xi and x̂i while minimizing the similarities between the anchor xi and other
images xj ’s in the same batch of size N . Strong global augmentations, such as
grayscaling, large cropping and strong color jittering, are used to get positives.
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Fig. 3. (a) Samples for synthetic spot-the-difference; (b) Augmentation comparison

Typically, an encoder extracts features hi, ĥi and hj ’s which are inputs to a
multilayer perceptron (MLP) head. The MLP head extracts the L2 normalized
embeddings zi, ẑi and zj ’s to compute the InfoNCE loss defined as follows.

LNCE(xi, x̂i) = − log
exp (zi · ẑi/τ)

exp (zi · ẑi/τ) +
∑N

j=1 1j ̸=i exp (zi, zj/τ)
(1)

τ is a temperature scaling hyperparameter. In addition, SimSiam [9] shows that
self-supervised models can be trained even without negatives where only simi-
larity modeling is implemented for positives.
Remark: Images augmented by most strong global transformations in SSL,
such as grayscaling and large cropping, share semantics with anchor but with
different local details (a dog v.s. a dog head). Thus to maximize their similarity,
the features are forced to be invariant about local details and capture the global
semantics. This is even enforced by minimizing similarities between anchor and
different images in a batch as they have different global structures [8,17]. This
further motivates us to promote local sensitivity in SSL for anomaly detection.

3.2 Augmentations for SPD

Local augmentation: In SPD, the locally deformed images, rather than other
images of a batch in standard contrastive training, are used as negatives. Smooth-
Blend is proposed to produce local deformations. The first column in Fig. 3
(b) presents the samples augmented by SmoothBlend. It is implemented by a
smoothed alpha blending between an image and a small randomly cut patch of
the same image. Specifically, color jittering is applied to a cut patch. Then an
all-zero foreground layer u is created with the patch pasted to a random location.
An alpha mask α is created where the pixels corresponding to the pasted patch
are set to 1 otherwise 0, followed by a Gaussian blur. Finally, the augmented
sample is obtained by x̄ = (1− α)⊙ x+ α⊙ u. ⊙ is the element-wise product.
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Fig. 4. The contrastive spot-the-difference learning

Global augmentation: To generate global variations for both SPD positives
and negatives, we use weak global augmentation. Adding global variations to
SPD is motivated by the potentially small global variations in realistic manu-
facturing environment, such as lighting, object positions, etc. To simulate such
slight changes, we choose weak random cropping, Gaussian blurring, horizontal
flipping and color jittering. Such weak global augmentations are different from
strong transformations used in SimSiam, SimCLR and MoCo which is illustrated
by last two columns in Fig. 3 (b). As we can see, there might be just 20% overlap
between the anchor and strongly augmented positive. If the network is designed
to maximize the distance between negatives with only subtle changes while mini-
mizing the distance between positives with largely global transformations, it is a
confusing task which might harm representation learning for anomaly detection.
Remark: SmoothBlend is a smoothed version of CutPaste augmentation pro-
posed in [26]. Both of them can be used to generate structural local deformations,
illustrated by the first two columns in Fig. 3 (b). Unlike the sharp edges of the
CutPaste patches, the local and subtle perturbations with smooth edges from
SmoothBlend provides a challenging puzzle for models.

3.3 Training with SPD

Based on the above augmentations, we propose the SPD learning illustrated by
Fig. 4 with Fig. 3 (a) presents more SPD training samples. For an anchor image
xi, a negative x̃

−
i is generated by applying weak global augmentations followed by

SmoothBlend. The positive x̃+
i is produced by weak global transformations only.

Then a shared feature extractor f(·) extracts the representations hi, h̃
−
i , h̃

+
i (hi’s

are used for downstream anomaly detection tasks). They are further inputted
into a shared multilayer perceptron (MLP) g(·) to get the projections zi, z̃

−
i , z̃+i .

The cosine similarity between zi, z̃
−
i is minimized while similarity between zi, z̃

+
i
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is maximized. In summary, the SPD learning minimizes the following SPD loss.

LSPD(xi, x̃
−
i , x̃

+
i ) = cos(zi, z̃

−
i )− cos(zi, z̃

+
i ). (2)

Standard contrastive SSL with SPD: Regularizing SSL with SPD is simple.
Taking SimCLR as an example baseline, for a given image, SimCLR generates
the anchor xi and positive x̂i via strong global augmentations with other images
xj ’s in the same batch as negatives. Then SPD positives x̂+

i and negatives x̂−
i are

generated by SmoothBlend and weak global augmentations. The shared encoder
and MLP head in SimCLR are used to extract the image feature projections for
loss computation. Finally the network is trained by the following combined loss.

L(xi, x̂i, x̃
−
i , x̃

+
i ) = LNCE(xi, x̂i) + η · LSPD(xi, x̃

−
i , x̃

+
i ) (3)

Similary, we can apply SPD to MoCo. For SimSiam, LNCE(xi, x̂i) loss is replaced
by a cosine distance loss for positive pairs without considering negatives [9].
Standard supervised pre-training with SPD: With the class labels, stan-
dard supervised pre-trained features also capture global semantics to distinguish
categories with less attention to local details, similar to SSL. Thus SPD could
improve its local sensitivity. Specifically, on top of the last feature layer of the
standard supervised model (ResNet-50 [24]), an auxiliary classifier is added to
classify if an augmented SPD image has a local perturbation or not, which is
trained by cross-entropy loss. The backbone is shared to extract features.

4 Visual Anomaly (VisA) Dataset

4.1 Dataset Description

Table 1. Overview of VisA dataset

Object # normal # anomaly # anomaly
samples samples classes

Complex
structure

PCB1 1,004 100 4
PCB2 1,001 100 4
PCB3 1,006 100 4
PCB4 1,005 100 7

Multiple
instances

Capsules 602 100 5
Candle 1,000 100 8

Macaroni1 1,000 100 7
Macaroni2 1,000 100 7

Single
instance

Cashew 500 100 9
Chewing gum 503 100 6

Fryum 500 100 8
Pipe fryum 500 100 6

The VisA dataset contains 12 sub-
sets corresponding to 12 differ-
ent objects. Fig. 5 gives images
in VisA. There are 10,821 im-
ages with 9,621 normal and 1,200
anomalous samples. Four subsets
are different types of printed cir-
cuit boards (PCB) with rela-
tively complex structures contain-
ing transistors, capacitors, chips,
etc. For the case of multiple in-
stances in a view, we collect four subsets: Capsules, Candles, Macaroni1 and
Macaroni2. Instances in Capsules and Macaroni2 largely differ in locations and
poses. Moreover, we collect four subsets including Cashew, Chewing gum, Fryum
and Pipe fryum, where objects are roughly aligned. The anomalous images con-
tain various flaws, including surface defects such as scratches, dents, color spots
or crack, and structural defects like misplacement or missing parts. There are
5-20 images per defect type and an image may contain multiple defects. The
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Fig. 5. Samples of VisA datasets. First row: normal images; Second row: anomalous
images; Third row: anomalies viewed by zooming in.

defects were manually generated to produce realistic anomalies. All images were
acquired using a 4, 000 × 6, 000 high-resolution RGB sensor. Both image and
pixel-level annotations are provided. Table 1 gives the statistics of VisA dataset.

Fig. 6 illustrates the differences between VisA and MVTec-AD. First, VisA
considers more complex structures, comparing the VisA - PCB3 with multiple
electronic components to a single one of MVTec - transistor as an example.
Second, multiple objects can appear in VisA (Capsules) as opposed to a single
object in MVTec-AD. Third, large variation in object locations is covered by
VisA (Capsules) while almost all objects in MVTec-AD are roughly aligned.
Lastly, MVTec-AD has 5, 354 images and VisA is 2× larger with 10, 821 images.

4.2 Evaluation Protocol and Metrics

We establish three evaluation protocols for each of 12 objects in VisA dataset.
First, following MVTec-AD 1-class protocol, we establish VisA 1-class protocol
by assigning 90% normal images to train set while 10% normal images and all
anomalous samples are grouped as test set. Second, we establish 2-class high/low-



10 Y. Zou et al.

Fig. 6. Comparing VisA and MVTec-AD. VisA is more challenging due to the complex
object structures, multiple instances, large variations of objects and scale.

shot evaluation protocols as proxies for realistic 2-class setups in commercial
products [1,2]. In high-shot setup, for each object, 60%/40% normal and anoma-
lous images are assigned to train/test set respectively. For low-shot benchmark,
firstly, 20%/80% normal and anomalous images are grouped to train/test set
respectively. Then the k-shot (k=5,10) setup randomly samples k images from
both classes in train set for training. The averaged performances over 5 random
runs will be reported. Note that for both 1-class and 2-class training setups,
test sets have samples from both classes. In addition, we report model perfor-
mances averaged over all subsets of VisA and MVTec-AD in Sec. 5. The model
performances for each subset are reported in Sec. D of supplementary.

For metrics, we report Area Under Precision-Recall curve (AU-PR) in combi-
nation with the Area Under Receiver Operator Characteristic curve (AU-ROC).
AU-ROC is the most widely used metric for anomaly detection tasks [14,33,44].
But as pointed out in [11,13,37], in imbalanced dataset where performance of
minor class is more important, AU-ROC might provide an inflated view of per-
formance which may cause challenges in measuring models’ true capabilities.
This is true for anomaly detection where anomalies are often rare. In [3], the
best method is Student-Teacher [5] with 92.2% AU-ROC which seems to be
close to perfection. However, it only gets 59.9% AU-PR which is far-from sat-
isfactory. The imbalance issue is more extreme in anomaly segmentation where
normal pixels (negatives) can be tens/hundreds times more than anomalous pix-
els (positives). Even for a bad model, the false positive rate can be small due
to numerous negatives, leading to a high AU-ROC. Thus we argue AU-PR is a
better performance measurement. Our experiments also demonstrate this point.

5 Experiments

Datasets: For self-supervised as well as supervised pre-training, we use Ima-
geNet 2012 classification dataset [16]. ImageNet consists 1, 000 classes with 1.28
million training images. For downstream tasks, in addition to our VisA dataset,
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Fig. 7. Scatter plots for various ImageNet pre-training models in 1-class setup.

Table 2. 1-class performance evaluation of various ImageNet pre-training options on
VisA and MVTec-AD with PaDiM. Bold numbers refers to the highest score. In the
brackets are the gaps to the ImageNet supervised/self-supervised pre-training counter-
part. In green are the gaps of at least +0.5 point.

ImageNet
labels

VisA (1-class) MVTec-AD (1-class)
Classification Segmentation Classification Segmentation

AU-PR AU-ROC AU-PR AU-ROC AU-PR AU-ROC AU-PR AU-ROC

Sup. pre-train ✓ 88.2 87.8 11.4 93.1 97.4 94.5 35.2 94.4

SimSiam ✗ 80.2 78.1 9.1 93.1 92.6 83.9 29.7 92.1
+SPD ✗ 82.8 (+2.6) 81.2 (+3.1) 9.4 (+0.3) 92.7 (-0.4) 94.1 (+1.5) 88.0 (+4.1) 32.0 (+2.3) 92.2 (+0.1)

MoCo ✗ 83.6 83.4 10.5 93.4 95.0 90.4 33.2 93.4
+SPD ✗ 84.1 (+0.5) 83.0 (-0.4) 11.0 (+0.5) 93.5 (+0.1) 95.6 (+0.6) 90.5 (+0.1) 33.5 (+0.3) 93.5 (+0.1)

SimCLR ✗ 82.7 81.6 8.8 89.7 94.7 90.7 29.8 92.1
+SPD ✗ 83.9 (+0.8) 82.6 (+1.0) 8.7 (-0.1) 89.9 (+0.2) 96.8 (+2.1) 93.8 (+3.1) 31.7 (+1.9) 92.9 (+0.8)

Sup. pre-train+SPD ✓ 88.6 (+0.4) 87.8 (+0.0) 12.0 (+0.6) 93.8 (+0.7) 97.5 (+0.1) 94.6 (+0.1) 36.3 (+1.1) 94.6 (+0.2)

we use MVTec-AD dataset [4] as a 1-class training benchmark. MVTec-AD con-
tains 15 sub-datasets with a total of 5, 354 images.
Anomaly detection and segmentation algorithms: To evaluate the transfer
learning performances of different pre-training, we adopt the following algorithms
for anomaly detection and segmentation.
1-class anomaly classification/segmentation: We leverage PaDiM [14] which is
one of the top performing 1-class anomaly detection/localization methods.
2-class anomaly classification/segmentation: We train a standard binary ResNet
[24] as the supervised model for classification. A U-Net [32] is used as segmen-
tation model. The focal loss [27] is used to overcome the data imbalance.
Implementation details: Unless otherwise noted, we choose ResNet-50 as
the major backbone. We adopt exactly the same hyperparameters in SimSiam,
MoCo, SimCLR and supervised learning for pre-training. More implementation
details are in the supplementary.

5.1 SPD in high-shot 1-class/2-class Regimes

For the 1-class setting, the results of PaDiM with various pre-training options
w/wo SPD are shown in Table 2. The results are also visualized as scatter plots
in Fig. 7. We have several key observations. First, SPD improves performances of
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Table 3. 2-class fine-tuning with different pre-training on VisA high-shot setup.

ImageNet
labels

VisA (2-class, high-shot)
Classification Segmentation

AU-PR AU-ROC AU-PR AU-ROC

Sup. pre-train ✓ 97.5 99.5 65.1 97.3

SimSiam ✗ 88.7 97.9 53.8 97.3
+SPD ✗ 93.2 (+4.5) 98.7 (+0.8) 59.7 (+5.9) 98.1 (+0.8)

MoCo ✗ 93.9 98.8 62.4 98.0
+SPD ✗ 94.2 (+0.3) 98.8 (+0.0) 64.4 (+2.0) 97.9 (-0.1)

SimCLR ✗ 93.4 98.5 67.7 95.3
+SPD ✗ 92.7 (-0.7) 98.6 (+0.1) 68.2 (+0.5) 95.7 (+0.4)

Sup. pre-train+SPD ✓ 98.3 (+0.8) 99.7 (+0.2) 71.9 (+6.8) 98.5 (+1.2)

both anomaly detection and segmentation across almost all pre-training baselines
on both VisA and MVTec-AD. While we report both AU-PR and AU-ROC, the
former metric is more relevant to the application and we see that self-supervised
methods are improved up to AU-PR of 2.6%. Note both metrics are averaged
over the 12 objects in VisA. For different objects, the gains differ and are given
in Sec. D of the supplementary. Second, the gap between self-supervised pre-
training with SimSiam, SimCLR, MoCo, and supervised pre-training is large.
SPD reduces this gap, but no combination of SSL and SPD beats supervised
pre-training. This is in contrast to the low-shot regime in Section 5.2, where
self-supervision has advantages in some cases. Third, PaDiM is one of the SOTA
methods with > 97% AU-ROC in MVTec. But it just achieves < 90% AU-
PR and AU-ROC in VisA - classification. For VisA - segmentation, PaDiM
only achieves about 10% AU-PR. This shows the difficulty of the VisA 1-class
benchmark. Moreover, the gap between low AU-PR and high AU-ROC for both
VisA/MVTec segmentation justifies the inflated performance view of AU-ROC,
in favor of AU-PR as a more suitable metric in imbalanced datasets. In addition,
even in terms of AU-ROC, the SPD consistently improves almost all baselines.

In Table 3, we show the results for the 2-class high-shot regime on the VisA
and observe similar trends as above. However, the AU-PR gains from SPD on top
of SimSiam and supervised pre-training are higher at 5.9% and 6.8% respectively
for segmentation. Another key point to note here is that the AU-ROC metrics
are saturating even though AU-PR metrics show room for improvement, partic-
ularly for segmentation. This another data point for preferring AU-PR metric.
Comparing Tables 2 and 3, there is a significant gap between 1-class and 2-class
performance on VisA. As anomalies are harder to obtain compared to normal
images, bridging the gap is an open challenge to the research community.

5.2 SPD in Low-shot 2-class Regime

Low-shot anomaly segmentation: With different ImageNet pre-training as
initialization, a 2-class U-Net with ResNet-50 encoder is trained for each 5/10-
shot segmentation setup. From Table 4, SPD again improves all baselines in both
5-shot and 10-shot evaluation, with AU-PR gain up to 2.3%. One departure from
the high-shot regime is that for few-shot anomaly segmentation, MoCo+SPD is
the best method, even outperforming supervised pre-training.
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Table 4. Low-shot anomaly detection and segmentation on VisA.

ImageNet
labels

Classification (2-class, low-shot) Segmentation (2-class, low-shot)
5-shot 10-shot 5-shot 10-shot

AU-PR AU-ROC AU-PR AU-ROC AU-PR AU-ROC AU-PR AU-ROC

Sup. pre-train ✓ 59.2 85.5 70.4 91.7 17.8 74.6 28.3 81.8

SimSiam ✗ 51.9 82.3 65.0 89.4 17.3 75.2 28.5 81.6
+SPD ✗ 56.1 (+4.2) 84.0 (+1.7) 67.6 (+2.6) 90.8 (+1.4) 18.2 (+0.9) 76.0 (+0.8) 29.7 (+1.2) 83.2 (+1.6)

MoCo ✗ 56.1 83.8 68.7 90.6 21.5 80.5 32.3 85.7
+SPD ✗ 56.4 (+0.3) 83.9 (+0.1) 68.0 (-0.7) 90.1 (-0.5) 22.1 (+0.6) 78.5 (-2.0) 32.8 (+0.5) 84.9 (-0.8)

SimCLR ✗ 48.4 79.6 58.2 86.0 18.4 71.2 23.0 75.1
+SPD ✗ 47.4 (-1.0) 79.9 (+0.3) 59.0 (+0.8) 86.1 (+0.1) 18.9 (+0.5) 74.5 (+3.3) 25.1 (+2.1) 78.2 (+3.1)

Sup. pre-train+SPD ✓ 59.8 (+0.6) 85.9 (+0.4) 71.2 (+0.8) 92.1 (+0.4) 18.7 (+0.9) 75.9 (+1.3) 30.6 (+2.3) 81.8 (+0.0)

Table 5. Ablation study

VisA (1-class) MVTec-AD (1-class)
Classification Segmentation Classification Segmentation

AU-PR AU-ROC AU-PR AU-ROC AU-PR AU-ROC AU-PR AU-ROC

SimSiam w/ Res50 80.2 78.1 9.1 93.1 92.6 83.9 29.7 92.1

+SPD (η = 0.1) 82.8 81.2 9.4 92.7 94.1 88.0 32.0 92.2
+SPD (η = 0.5) 80.5 79.3 8.7 93.0 93.3 84.9 30.1 91.9
+SPD (η = 1.0) 81.5 79.8 9.4 92.8 93.4 85.8 30.0 92.0

+SPD w/ CutPaste 78.8 77.0 9.7 93.1 93.5 85.2 28.2 91.3
+SPD w/ Xent 71.4 66.6 2.7 84.8 86.3 71.0 15.2 82.6

SimSiam w/ WideRes50 80.3 77.7 9.9 93.6 93.0 84.7 31.3 92.2
+SPD 81.9 80.4 10.5 93.7 93.4 85.4 32.5 92.8

Table 6. 1-class performance evaluation on VisA and MVTec-AD with PatchCore.

Backbone:
Wide ResNet50

VisA (1-class) MVTec-AD (1-class)
Classification Segmentation Classification Segmentation

AU-PR AU-ROC AU-PR AU-ROC AU-PR AU-ROC AU-PR AU-ROC

Sup. pre-train 93.3 92.4 38.4 98.4 99.2 99.8 48.8 97.6
Sup. pre-train+SPD 93.8 (+0.5) 92.5 (+0.1) 39.3 (+0.9) 98.1 (-0.3) 99.0 (-0.2) 99.7 (-0.1) 49.3 (+0.5) 97.5 (-0.1)

Low-shot anomaly detection: Initialized with different ImageNet pre-training,
a 2-class ResNet-50 is trained in 5/10-shot setups for anomaly detection. From
Table 4, overall the supervised pre-training with SPD outperforms both super-
vised pre-training only and other SSL’s. Moreover, SPD significantly improves
SimSiam with 4.2% AU-PR in 5-shot and 2.6% AU-PR in 10-shot, although it’s
still inferior to supervised pre-training.

5.3 Ablation Study

We conduct extensive ablation studies based on ImageNet SimSiam pre-training
and PaDiM as the anomaly detection and segmentation algorithms trained in
the 1-class setups of VisA and MVTec-AD. Results are shown in Table 5.
Sensitivity analysis on SPD loss weight η: From Table 5, we see consistent
improvement for η = 0.1, 0.5, 1.0 in at least one task for both datasets. SPD loss
with η = 0.1 gives us the best performances in both datasets, which is chosen as
the default SPD loss weight for all pre-training with SPD. So the SimSiam+SPD
(η = 0.1) is regarded as SimSiam+SPD for better clarity.
Comparison between SPD and CutPaste [26]: CutPaste and cross-entropy
loss used in [26] for anomaly detection training can also be used in ImageNet
pre-training. An ablation study is done to demonstrate the superiority of the
proposed SmoothBlend and SPD loss. With LSPD, SmoothBlend is arguably
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better than CutPaste by 4.0% and 3.8% AU-PR improvement in VisA - classi-
fication and MVTec - segmentation (+SPD v.s. +SPD w/ CutPaste). With the
SmoothBlend, the SPD loss significantly outperforms cross-entropy loss (+SPD
v.s. +SPD w/ Xent). Such results demonstrate the validity of proposed methods.

SPD with different backbones: ResNet-50 is adopted as the backbone for
all major experiments in this paper. We demonstrate the SPD can generalize to
different network architectures by experiments of SimSiam w/wo SPD on wide
ResNet-50 [45]. As in Table 5, SPD still improves the baseline.

Results with PatchCore: In addition to PaDiM, we also evaluate supervised
pre-trained models based on another state-of-the-art 1-class method PatchCore
[33]. Wide ResNet-50 is chosen as the backbone network. As in Table 6, on VisA,
SPD improves supervised pre-trained model by 0.5% and 0.9% AU-PR for both
classification and segmentation. On MVTec-AD, SPD improves by 0.5% AU-PR
for segmentation with slightly performance decreased in classification.

Extending SPD to other tasks: Besides improvement on defect detection and
segmentation, SPD also improves ImageNet supervised classification accuracy:
69.8% → 70.2% for ResNet-18 and 76.1% → 76.4% for ResNet-50. Pre-trained
models with better ImageNet accuracy are expected to benefit downstream tasks
more. Thus we speculate that SPD will work well for object recognition and
detection, especially on fine-grained classification and small object detection as
SPD promotes local sensitivity. In addition, we will leverage the proposed SPD
training as a 1-class anomaly detection model to be trained by downstream data.

Qualitative results: To qualitatively demonstrate the effectiveness of SPD
regularization, we represent attention maps and anomaly segmentation in Sec.
E of the supplementary due to page limits.

6 Conclusions

In this work, we present a spot-the-difference (SPD) training to regularize pre-
trained models’ local sensitivity to anomalous patterns. We also present a novel
Visual Anomaly (VisA) dataset which is the largest industrial anomaly detec-
tion dataset. Extensive experiments demonstrate the benefits of SPD for vari-
ous contrastive self-supervised and supervised pre-training for anomaly detection
and segmentation. Compared to standard supervised pre-training, SimSiam with
SPD obtains superior or competitive performances in low-shot regime while su-
pervised learning with SPD presents better performances in various setups.
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